Issue published May 22, 2024

Go to section:
Endothelial HIFα/PDGF-B to smooth muscle Beclin1 signaling sustains pathological muscularization in pulmonary hypertension

Saddouk et al. report that, in established pulmonary hypertension, endothelial production of platelet-derived growth factor B is required for survival of pathological distal arteriole smooth muscle cells via the autophagy initiator Beclin1, thereby sustaining hemodynamic abnormalities. The cover image of the murine lung shows enhanced staining for proapoptotic marker activated BAX (red) in pulmonary arteriole smooth muscle cells (green) with deletion of Beclin1. Image credit: Fatima Z. Saddouk and Junichi Saito.

Technical Advance
Abstract

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6–transgenic (hIL-6–transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.

Authors

Zainul S. Hasanali, Alfred L. Garfall, Lisa Burzenski, Leonard D. Shultz, Yan Tang, Siddhant Kadu, Neil C. Sheppard, Wei Liu, Derek Dopkin, Dan T. Vogl, Adam D. Cohen, Adam J. Waxman, Sandra P. Susanibar-Adaniya, Martin Carroll, Edward A. Stadtmauer, David Allman

×
Physician-Scientist Development
Abstract

Physician-scientists play a crucial role in advancing medical knowledge and patient care, yet the long periods of time required to complete training may impede expansion of this workforce. We examined the relationship between postgraduate training and time to receipt of NIH or Veterans Affairs career development awards (CDAs) for physician-scientists in internal medicine. Data from NIH RePORTER were analyzed for internal medicine residency graduates who received specific CDAs (K08, K23, K99, or IK2) in 2022. Additionally, information on degrees and training duration was collected. Internal medicine residency graduates constituted 19% of K awardees and 28% of IK2 awardees. Of MD-PhD internal medicine–trained graduates who received a K award, 92% received a K08 award; of MD-only graduates who received a K award, a majority received a K23 award. The median time from medical school graduation to CDA was 9.6 years for K awardees and 10.2 years for IK2 awardees. The time from medical school graduation to K or IK2 award was shorter for US MD-PhD graduates than US MD-only graduates. We propose that the time from medical school graduation to receipt of CDAs must be shortened to accelerate training and retention of physician-scientists.

Authors

Emily Jane Gallagher, Paul R. Conlin, Barbara I. Kazmierczak, Jatin M. Vyas, Olujimi A. Ajijola, Christopher D. Kontos, Robert A. Baiocchi, Kyu Y. Rhee, Patrick J. Hu, Carlos M. Isales, Christopher S. Williams, Don C. Rockey

×
Research Articles
Abstract

Mechanisms underlying maintenance of pathological vascular hypermuscularization are poorly delineated. Herein, we investigated retention of smooth muscle cells (SMCs) coating normally unmuscularized distal pulmonary arterioles in pulmonary hypertension (PH) mediated by chronic hypoxia with or without Sugen 5416, and reversal of this pathology. With hypoxia in mice or culture, lung endothelial cells (ECs) upregulated hypoxia-inducible factor 1α (HIF1-α) and HIF2-α, which induce platelet-derived growth factor B (PDGF-B), and these factors were reduced to normoxic levels with re-normoxia. Re-normoxia reversed hypoxia-induced pulmonary vascular remodeling, but with EC HIFα overexpression during re-normoxia, pathological changes persisted. Conversely, after establishment of distal muscularization and PH, EC-specific deletion of Hif1a, Hif2a, or Pdgfb induced reversal. In human idiopathic pulmonary artery hypertension, HIF1-α, HIF2-α, PDGF-B, and autophagy-mediating gene products, including Beclin1, were upregulated in pulmonary artery SMCs and/or lung lysates. Furthermore, in mice, hypoxia-induced EC-derived PDGF-B upregulated Beclin1 in distal arteriole SMCs, and after distal muscularization was established, re-normoxia, EC Pdgfb deletion, or treatment with STI571 (which inhibits PDGF receptors) downregulated SMC Beclin1 and other autophagy products. Finally, SMC-specific Becn1 deletion induced apoptosis, reversing distal muscularization and PH mediated by hypoxia with or without Sugen 5416. Thus, chronic hypoxia induction of the HIFα/PDGF-B axis in ECs is required for non–cell-autonomous Beclin1-mediated survival of pathological distal arteriole SMCs.

Authors

Fatima Z. Saddouk, Andrew Kuzemczak, Junichi Saito, Daniel M. Greif

×

Abstract

NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-β and further enhanced by hypoxia. The effect of TGF-β was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.

Authors

Ioannis Papaioannou, Athina Dritsoula, Ping Kang, Reshma S. Baliga, Sarah L. Trinder, Emma Cook, Xu Shiwen, Adrian J. Hobbs, Christopher P. Denton, David J. Abraham, Markella Ponticos

×

Abstract

Small cell lung cancer (SCLC) is the most aggressive lung cancer entity with an extremely limited therapeutic outcome. Most patients are diagnosed at an extensive stage. However, the molecular mechanisms driving SCLC invasion and metastasis remain largely elusive. We used an autochthonous SCLC mouse model and matched samples from patients with primary and metastatic SCLC to investigate the molecular characteristics of tumor metastasis. We demonstrate that tumor cell invasion and liver metastasis in SCLC are triggered by an Angiopoietin-2 (ANG-2)/Integrin β-1–dependent pathway in tumor cells, mediated by focal adhesion kinase/Src kinase signaling. Strikingly, CRISPR-Cas9 KO of Integrin β-1 or blocking Integrin β-1 signaling by an anti–ANG-2 treatment abrogates liver metastasis formation in vivo. Interestingly, analysis of a unique collection of matched samples from patients with primary and metastatic SCLC confirmed a strong increase of Integrin β-1 in liver metastasis in comparison with the primary tumor. We further show that ANG-2 blockade combined with PD-1–targeted by anti-PD-1 treatment displays synergistic treatment effects in SCLC. Together, our data demonstrate a fundamental role of ANG-2/Integrin β-1 signaling in SCLC cells for tumor cell invasion and liver metastasis and provide a potentially new effective treatment strategy for patients with SCLC.

Authors

Lydia Meder, Charlotte Isabelle Orschel, Christoph Julius Otto, Mirjam Koker, Johannes Brägelmann, Meryem S. Ercanoglu, Sabrina Dähling, Anik Compes, Carolin Selenz, Marieke Nill, Felix Dietlein, Alexandra Florin, Marie-Lisa Eich, Sven Borchmann, Margarete Odenthal, Raquel Blazquez, Frank Hilberg, Florian Klein, Michael Hallek, Reinhard Büttner, H. Christian Reinhardt, Roland T. Ullrich

×

Abstract

MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell–derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell–derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.

Authors

Kristiina Pulli, Jonna Saarimäki-Vire, Pekka Ahonen, Xiaonan Liu, Hazem Ibrahim, Vikash Chandra, Alice Santambrogio, Yafei Wang, Kirsi Vaaralahti, Anna-Pauliina Iivonen, Johanna Känsäkoski, Johanna Tommiska, Yasmine Kemkem, Markku Varjosalo, Sanna Vuoristo, Cynthia L. Andoniadou, Timo Otonkoski, Taneli Raivio

×

Abstract

Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.

Authors

Yijing Zhou, Vanessa B. Sanchez, Peining Xu, Thomas Roule, Marco Flores-Mendez, Brianna Ciesielski, Donna Yoo, Hiab Teshome, Teresa Jimenez, Shibo Liu, Mike Henne, Tim O’Brien, Ye He, Clementina Mesaros, Naiara Akizu

×

Abstract

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.

Authors

Milankumar Prajapati, Jared Z. Zhang, Lauren Chiu, Grace S. Chong, Courtney J. Mercadante, Heather L. Kowalski, Bradley Delaney, Jessica A. Anderson, Shuling Guo, Mariam Aghajan, Thomas B. Bartnikas

×

Abstract

This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients’ blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.

Authors

Yari Giménez, Manuel Palacios, Rebeca Sánchez-Domínguez, Christiane Zorbas, Jorge Peral, Alexander Puzik, Laura Ugalde, Omaira Alberquilla, Mariela Villanueva, Paula Río, Eva Gálvez, Lydie Da Costa, Marion Strullu, Albert Catala, Anna Ruiz-Llobet, Jose Carlos Segovia, Julián Sevilla, Brigitte Strahm, Charlotte M. Niemeyer, Cristina Beléndez, Thierry Leblanc, Denis L.J. Lafontaine, Juan Bueren, Susana Navarro

×

Abstract

Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer and is characterized by an unfavorable prognosis. To elucidate the distinct molecular alterations in ESCC and investigate therapeutic targets, we performed a comprehensive analysis of transcriptomics, proteomics, and phosphoproteomics data derived from 60 paired treatment-naive ESCC and adjacent nontumor tissue samples. Additionally, we conducted a correlation analysis to describe the regulatory relationship between transcriptomic and proteomic processes, revealing alterations in key metabolic pathways. Unsupervised clustering analysis of the proteomics data stratified patients with ESCC into 3 subtypes with different molecular characteristics and clinical outcomes. Notably, subtype III exhibited the worst prognosis and enrichment in proteins associated with malignant processes, including glycolysis and DNA repair pathways. Furthermore, translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1) was validated as a potential prognostic molecule for ESCC. Moreover, integrated kinase-substrate network analysis using the phosphoproteome nominated candidate kinases as potential targets. In vitro and in vivo experiments further confirmed casein kinase II subunit α (CSNK2A1) as a potential kinase target for ESCC. These underlying data represent a valuable resource for researchers that may provide better insights into the biology and treatment of ESCC.

Authors

Dengyun Zhao, Yaping Guo, Huifang Wei, Xuechao Jia, Yafei Zhi, Guiliang He, Wenna Nie, Limeng Huang, Penglei Wang, Kyle Vaughn Laster, Zhicai Liu, Jinwu Wang, Mee-Hyun Lee, Zigang Dong, Kangdong Liu

×

Abstract

Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro-tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph-circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC.

Authors

Htoo Shwe Eain, Hotaka Kawai, Masaaki Nakayama, May Wathone Oo, Toshiaki Ohara, Yoko Fukuhara, Kiyofumi Takabatake, Quisheng Shan, Yamin Soe, Kisho Ono, Keisuke Nakano, Nobuyoshi Mizukawa, Seiji Iida, Hitoshi Nagatsuka

×

Abstract

The homeostasis of IgG is maintained by the neonatal Fc receptor, FcRn. Consequently, antagonism of FcRn to reduce endogenous IgG levels is an emerging strategy for treating antibody-mediated autoimmune disorders using either FcRn-specific antibodies or an engineered Fc fragment. For certain FcRn-specific antibodies, this approach has resulted in reductions in the levels of serum albumin, the other major ligand transported by FcRn. Cellular and molecular analyses of a panel of FcRn antagonists have been carried out to elucidate the mechanisms leading to their differential effects on albumin homeostasis. These analyses have identified 2 processes underlying decreases in albumin levels during FcRn blockade: increased degradation of FcRn and competition between antagonist and albumin for FcRn binding. These findings have potential implications for the design of drugs to modulate FcRn function.

Authors

Guanglong Ma, Andrew R. Crowley, Liesbeth Heyndrickx, Ilse Rogiers, Eef Parthoens, Jolien Van Santbergen, Raimund J. Ober, Vladimir Bobkov, Hans de Haard, Peter Ulrichts, Erik Hofman, Els Louagie, Bianca Balbino, E. Sally Ward

×

Abstract

Fetal growth restriction (FGR) is accompanied by early activation of hepatic glucose production (HGP), a hallmark of type 2 diabetes (T2D). Here, we used fetal hepatic catheterization to directly measure HGP and substrate flux in a sheep FGR model. We hypothesized that FGR fetuses would have increased hepatic lactate and amino acid uptake to support increased HGP. Indeed, FGR fetuses compared with normal (CON) fetuses had increased HGP and activation of gluconeogenic genes. Unexpectedly, hepatic pyruvate output was increased, while hepatic lactate and gluconeogenic amino acid uptake rates were decreased in FGR liver. Hepatic oxygen consumption and total substrate uptake rates were lower. In FGR liver tissue, metabolite abundance, 13C-metabolite labeling, enzymatic activity, and gene expression supported decreased pyruvate oxidation and increased lactate production. Isolated hepatocytes from FGR fetuses had greater intrinsic capacity for lactate-fueled glucose production. FGR livers also had lower energy (ATP) and redox state (NADH/NAD+ ratio). Thus, reduced hepatic oxidative metabolism may make carbons available for increased HGP, but also produces nutrient and energetic stress in FGR liver. Intrinsic programming of these pathways regulating HGP in the FGR fetus may underlie increased HGP and T2D risk postnatally.

Authors

Laura D. Brown, Paul J. Rozance, Dong Wang, Evren C. Eroglu, Randall B. Wilkening, Ashley Solmonson, Stephanie R. Wesolowski

×

Abstract

While sclerostin-neutralizing antibodies (Scl-Abs) transiently stimulate bone formation by activating Wnt signaling in osteoblast lineage cells, they exert sustained inhibition of bone resorption, suggesting an alternate signaling pathway by which Scl-Abs control osteoclast activity. Since sclerostin can activate platelet-derived growth factor receptors (PDGFRs) in osteoblast lineage cells in vitro and PDGFR signaling in these cells induces bone resorption through M-CSF secretion, we hypothesized that the prolonged anticatabolic effect of Scl-Abs could result from PDGFR inhibition. We show here that inhibition of PDGFR signaling in osteoblast lineage cells is sufficient and necessary to mediate prolonged Scl-Ab effects on M-CSF secretion and osteoclast activity in mice. Indeed, sclerostin coactivates PDGFRs independently of Wnt/β-catenin signaling inhibition, by forming a ternary complex with LRP6 and PDGFRs in preosteoblasts. In turn, Scl-Ab prevents sclerostin-mediated coactivation of PDGFR signaling and consequent M-CSF upregulation in preosteoblast cultures, thereby inhibiting osteoclast activity in preosteoblast/osteoclast coculture assays. These results provide a potential mechanism explaining the dissociation between anabolic and antiresorptive effects of long-term Scl-Ab.

Authors

Cyril Thouverey, Pierre Apostolides, Julia Brun, Joseph Caverzasio, Serge Ferrari

×

Abstract

Sarcomatoid dedifferentiation is common to multiple renal cell carcinoma (RCC) subtypes, including chromophobe RCC (ChRCC), and is associated with increased aggressiveness, resistance to targeted therapies, and heightened sensitivity to immunotherapy. To study ChRCC dedifferentiation, we performed multiregion integrated paired pathological and genomic analyses. Interestingly, ChRCC dedifferentiates not only into sarcomatoid but also into anaplastic and glandular subtypes, which are similarly associated with increased aggressiveness and metastases. Dedifferentiated ChRCC shows loss of epithelial markers, convergent gene expression, and whole genome duplication from a hypodiploid state characteristic of classic ChRCC. We identified an intermediate state with atypia and increased mitosis but preserved epithelial markers. Our data suggest that dedifferentiation is initiated by hemizygous mutation of TP53, which can be observed in differentiated areas, as well as mutation of PTEN. Notably, these mutations become homozygous with duplication of preexisting monosomes (i.e., chromosomes 17 and 10), which characterizes the transition to dedifferentiated ChRCC. Serving as potential biomarkers, dedifferentiated areas become accentuated by mTORC1 activation (phospho-S6) and p53 stabilization. Notably, dedifferentiated ChRCC share gene enrichment and pathway activation features with other sarcomatoid RCC, suggesting convergent evolutionary trajectories. This study expands our understanding of aggressive ChRCC, provides insight into molecular mechanisms of tumor progression, and informs pathologic classification and diagnostics.

Authors

Payal Kapur, Hua Zhong, Daniel Le, Ratna Mukhopadhyay, Jeffrey Miyata, Deyssy Carrillo, Dinesh Rakheja, Satwik Rajaram, Steffen Durinck, Zora Modrusan, James Brugarolas

×

Abstract

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eμ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.

Authors

Audrey L. Smith, Sydney A. Skupa, Alexandria P. Eiken, Timothy E. Reznicek, Elizabeth Schmitz, Nolan Williams, Dalia Y. Moore, Christopher R. D’Angelo, Avyakta Kallam, Matthew A. Lunning, R. Gregory Bociek, Julie M. Vose, Eslam Mohamed, Anna R. Mahr, Paul W. Denton, Ben Powell, Gideon Bollag, M. Jordan Rowley, Dalia El-Gamal

×

Abstract

Children with perinatally acquired HIV (PHIV) have special vaccination needs, as they make suboptimal immune responses. Here, we evaluated safety and immunogenicity of 2 doses of 4-component group B meningococcal vaccine in antiretroviral therapy–treated children with PHIV and healthy controls (HCs). Assessments included the standard human serum bactericidal antibody (hSBA) assay and measurement of IgG titers against capsular group B Neisseria meningitidis antigens (fHbp, NHBA, NadA). The B cell compartment and vaccine-induced antigen-specific (fHbp+) B cells were investigated by flow cytometry, and gene expression was investigated by multiplexed real-time PCR. A good safety and immunogenicity profile was shown in both groups; however, PHIV demonstrated a reduced immunogenicity compared with HCs. Additionally, PHIV showed a reduced frequency of fHbp+ and an altered B cell subset distribution, with higher fHbp+ frequency in activated memory and tissue-like memory B cells. Gene expression analyses on these cells revealed distinct mechanisms between PHIV and HC seroconverters. Overall, these data suggest that PHIV presents a diverse immune signature following vaccination. The impact of such perturbation on long-term maintenance of vaccine-induced immunity should be further evaluated in vulnerable populations, such as people with PHIV.

Authors

Nicola Cotugno, Alessia Neri, Marco Sanna, Veronica Santilli, Emma Concetta Manno, Giuseppe Rubens Pascucci, Elena Morrocchi, Donato Amodio, Alessandra Ruggiero, Marta Luisa Ciofi degl Atti, Irene Barneschi, Silvia Grappi, Ilaria Cocchi, Vania Giacomet, Daria Trabattoni, Giulio Olivieri, Stefania Bernardi, Daniel O’Connor, Emanuele Montomoli, Andrew J. Pollard, Paolo Palma

×

Abstract

BACKGROUND Persistent cough and dyspnea are prominent features of postacute sequelae of SARS-CoV-2 (also termed “long COVID”); however, physiologic measures and clinical features associated with these pulmonary symptoms remain poorly defined. Using longitudinal pulmonary function testing (PFT) and CT imaging, this study aimed to identify the characteristics and determinants of pulmonary long COVID.METHODS This single-center retrospective study included 1,097 patients with clinically defined long COVID characterized by persistent pulmonary symptoms (dyspnea, cough, and chest discomfort) lasting for 1 or more months after resolution of primary COVID infection.RESULTS After exclusion, a total of 929 patients with post-COVID pulmonary symptoms and PFTs were stratified as diffusion impairment and pulmonary restriction, as measured by percentage predicted diffusion capacity for carbon monoxide (DLCO) and total lung capacity (TLC). Longitudinal evaluation revealed diffusion impairment (DLCO ≤ 80%) and pulmonary restriction (TLC ≤ 80%) in 51% of the cohort overall (n = 479). In multivariable modeling regression analysis, invasive mechanical ventilation during primary infection conferred the greatest increased odds of developing pulmonary long COVID with diffusion impairment and restriction (adjusted odds ratio [aOR] = 9.89, 95% CI 3.62–26.9]). Finally, a subanalysis of CT imaging identified radiographic evidence of fibrosis in this patient population.CONCLUSION Longitudinal PFTs revealed persistent diffusion-impaired restriction as a key feature of pulmonary long COVID. These results emphasize the importance of incorporating PFTs into routine clinical practice for evaluation of long COVID patients with prolonged pulmonary symptoms. Subsequent clinical trials should leverage combined symptomatic and quantitative PFT measurements for more targeted enrollment of pulmonary long COVID patients.FUNDING National Institute of Allergy and Infectious Diseases (AI156898, K08AI129705), National Heart, Lung, and Blood Institute (HL153113, OTA21-015E, HL149944), and the COVID-19 Urgent Research Response Fund at the University of Alabama at Birmingham.

Authors

Michael John Patton, Donald Benson, Sarah W. Robison, Dhaval Raval, Morgan L. Locy, Kinner Patel, Scott Grumley, Emily B. Levitan, Peter Morris, Matthew Might, Amit Gaggar, Nathaniel Erdmann

×

Abstract

Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics — including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues — position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.

Authors

Jingrong Chen, Xiaoyi Shi, Yanan Deng, Junlong Dang, Yan Liu, Jun Zhao, Rongzhen Liang, Donglan Zeng, Wenbin Wu, Yiding Xiong, Jia Yuan, Ye Chen, Julie Wang, Weidong Lin, Xiangfang Chen, Weishan Huang, Nancy Olsen, Yunfeng Pan, Qingling Fu, Song Guo Zheng

×

Abstract

Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.

Authors

Trace Thome, Nicholas A. Vugman, Lauren E. Stone, Keon Wimberly, Salvatore T. Scali, Terence E. Ryan

×

Abstract

Since its emergence, SARS-CoV-2 has been continuously evolving, hampering the effectiveness of current vaccines against COVID-19. mAbs can be used to treat patients at risk of severe COVID-19. Thus, the development of broadly protective mAbs and an understanding of the underlying protective mechanisms are of great importance. Here, we isolated mAbs from donors with breakthrough infection with Omicron subvariants using a single–B cell screening platform. We identified a mAb, O5C2, which possesses broad-spectrum neutralization and antibody-dependent cell-mediated cytotoxic activities against SARS-CoV-2 variants, including EG.5.1. Single-particle analysis by cryo-electron microscopy revealed that O5C2 targeted an unusually large epitope within the receptor-binding domain of spike protein that overlapped with the angiotensin-converting enzyme 2 binding interface. Furthermore, O5C2 effectively protected against BA.5 Omicron infection in vivo by mediating changes in transcriptomes enriched in genes involved in apoptosis and interferon responses. Our findings provide insights into the development of pan-protective mAbs against SARS-CoV-2.

Authors

Yi-Hsuan Chang, Min-Feng Hsu, Wei-Nan Chen, Min-Hao Wu, Wye-Lup Kong, Mei-Yeh Jade Lu, Chih-Heng Huang, Fang-Ju Chang, Lan-Yi Chang, Ho-Yang Tsai, Chao-Ping Tung, Jou-Hui Yu, Yali Kuo, Yu-Chi Chou, Li-Yang Bai, Yuan-Chih Chang, An-Yu Chen, Cheng-Cheung Chen, Yi-Hua Chen, Chun-Che Liao, Chih-Shin Chang, Jian-Jong Liang, Yi-Ling Lin, Takashi Angata, Shang-Te Danny Hsu, Kuo-I Lin

×

In-Press Preview - More

Abstract

Pathogenic variants in SCN8A, which encodes the voltage-gated sodium (NaV) channel NaV1.6, associate with neurodevelopmental disorders including developmental and epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by use of a neonatal-expressed alternatively spliced isoform of NaV1.6 (NaV1.6N), and engineered mutations rendering the channel tetrodotoxin (TTX) resistant. We investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in two developmentally regulated splice isoforms (NaV1.6N, NaV1.6A). We employed automated patch clamp recording to enhance throughput, and developed a novel neuronal cell line (ND7/LoNav) with low levels of endogenous NaV current to obviate the need for TTX-resistance mutations. Expression of NaV1.6N or NaV1.6A in ND7/LoNav cells generated NaV currents with small but significant differences in voltage-dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared to the corresponding wild-type (WT) channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrated the value of considering molecular and cellular context when investigating SCN8A variants.

Authors

Carlos G. Vanoye, Tatiana V. Abramova, Jean-Marc Dekeyser, Nora F. Ghabra, Madeleine J. Oudin, Christopher B. Burge, Ingo Helbig, Christopher H. Thompson, Alfred L. George Jr.

×

Abstract

Hypotrichosis is a genetic disorder which characterized by a diffuse and progressive loss of scalp and/or body hair. Nonetheless, the causative genes for several affected individuals remain elusive, and the underlying mechanisms have yet to be fully elucidated. Here, we discovered a dominant variant in ADAM17 gene caused hypotrichosis with woolly hair. Adam17 (p.D647N) knock-in mice model mimicked the hair abnormality in patients. ADAM17 (p.D647N) mutation led to hair follicle stem cells (HFSCs) exhaustion and caused abnormal hair follicles, ultimately resulting in alopecia. Mechanistic studies revealed that ADAM17 binds directly to E3 ubiquitin ligase TRIM47. ADAM17 (p.D647N) variant enhanced the association between ADAM17 and TRIM47, leading to an increase in ubiquitination and subsequent degradation of ADAM17 protein. Furthermore, reduced ADAM17 protein expression affected Notch signaling pathway, impairing the activation, proliferation, and differentiation of HFSCs during hair follicle regeneration. Overexpression of NICD rescued the reduced proliferation ability caused by Adam17 variant in primary fibroblast cells.

Authors

Xiaoxiao Wang, Chaolan Pan, Luyao Zheng, Jianbo Wang, Quan Zou, Peiyi Sun, Kaili Zhou, Anqi Zhao, Qiaoyu Cao, Wei He, Yumeng Wang, Ruhong Cheng, Zhirong Yao, Si Zhang, Hui Zhang, Ming Li

×

Abstract

Alloreactive memory, unlike naïve, CD8+ T cells resist transplantation tolerance protocols and are a critical barrier to long-term graft acceptance in the clinic. We here show that semi-allogeneic pregnancy successfully reprogrammed memory fetus/graft-specific CD8+ T cells (TFGS) towards hypofunction. Female C57BL/6 mice harboring memory CD8+ T cells generated by the rejection of BALB/c skin grafts and then mated with BALB/c males achieved rates of pregnancy comparable to naive controls. Post-partum fetus/graft-specific CD8+ T cells (TFGS) from skin-sensitized dams upregulated expression of T cell exhaustion (TEX) markers (Tox, Eomes, PD-1, TIGIT, and Lag3). Transcriptional analysis corroborated an enrichment of canonical T exhaustion (TEX) genes in post-partum memory TFGS and additionally, revealed a downregulation of a subset of memory-associated transcripts. Strikingly, pregnancy induced extensive epigenetic modifications of exhaustion- and memory-associated genes in memory TFGS, whereas minimal epigenetic modifications were observed in naive TFGS cells. Finally, post-partum memory TFGS durably expressed the exhaustion-enriched phenotype, and their susceptibility to transplantation tolerance was significantly restored compared to memory TFGS. These findings advance the concept of pregnancy as an epigenetic modulator inducing hypofunction in memory CD8+ T cells that has relevance not only for pregnancy and transplantation tolerance, but also for tumor immunity and chronic infections.

Authors

Jared M. Pollard, Grace Hynes, Dengping Yin, Malay Mandal, Fotini Gounari, Maria-Luisa Alegre, Anita S. Chong

×

Abstract

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that two distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice liver, dual AAV gene therapy combined with rapamycin reduced the impact of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and support clinical translation.

Authors

Louisa Jauze, Mallaury Vie, Quentin Miagoux, Lucille Rossiaud, Patrice Vidal, Valle Montalvo-Romeral, Hanadi Saliba, Margot Jarrige, Helene Polveche, Justine Nozi, Pierre-Romain Le Brun, Luca Bocchialini, Amandine Francois, Jeremie Cosette, Jérémy Rouillon, Fanny Collaud, Fanny Bordier, Emilie Bertil-Froidevaux, Christophe Georger, Laetitia Van Wittenberghe, Adeline Miranda, Nathalie Daniele, David Gross, Lucile Hoch, Xavier Nissan, Giuseppe Ronzitti

×

Abstract

Diabetes increases the risk of both cardiovascular disease and kidney disease. Notably, most of the excess cardiovascular risk in people with diabetes is in those with kidney disease. Apolipoprotein C3 (APOC3) is a key regulator of plasma triglycerides, and it has recently been suggested to play a role in both type 1 diabetes-accelerated atherosclerosis and kidney disease progression. To investigate if APOC3 plays a role in kidney disease in people with type 2 diabetes, we analyzed plasma levels of APOC3 from the Veterans Affairs Diabetes Trial (VADT). Elevated baseline APOC3 levels predicted a greater loss of renal function. To mechanistically test if APOC3 plays a role in diabetic kidney disease and associated atherosclerosis, we treated BTBR wildtype (WT) and leptin-deficient (OB; diabetic) mice, a model of type 2 diabetes, with an antisense oligonucleotide (ASO) to APOC3 or a control ASO (cASO), all in the setting of human-like dyslipidemia. Silencing APOC3 prevented diabetes-augmented albuminuria, renal glomerular hypertrophy, monocyte recruitment, and macrophage accumulation, partly driven by reduced ICAM1 expression. Furthermore, reduced levels of APOC3 suppressed atherosclerosis associated with diabetes. This suggests that targeting APOC3 might benefit both diabetes-accelerated atherosclerosis and kidney disease.

Authors

Jocelyn Cervantes, Juraj Koska, Farah Kramer, Shreeram Akilesh, Charles E. Alpers, Adam E. Mullick, Peter Reaven, Jenny E. Kanter

×